Three Lamps in Series Circuit: Calculating Circuit Parameters

What are the steps to calculate the total resistance of a circuit with three lamps (A, B, C) having resistances of 100Ω, 25Ω, and 50Ω, connected in series to a 240V supply by a cable of resistance 5Ω? How do we determine the cable voltage drop, the voltage across the lamps, and the current drawn by each lamp in this circuit?

Total resistance of the circuit is calculated by adding the resistances of all components (lamps and cable). The cable voltage drop can be determined using Ohm's Law, while the voltage across the lamps is equal to the total voltage supplied by the source (240V). The current drawn by each lamp is the same as the total current flowing through the circuit.

Circuit Representation

The circuit representation is a series circuit where lamps A, B, and C are connected in series with a cable of resistance 5Ω. The schematic diagram of the circuit shows a single path for current flow.

Total Resistance of the Circuit

To calculate the total resistance (Rtotal), we sum up the resistances of all components: RA = 100Ω RB = 25Ω RC = 50Ω Rcable = 5Ω Therefore, Rtotal = RA + RB + RC + Rcable

Cable Voltage Drop

Using Ohm's Law, we can determine the voltage drop across the cable: Vcable = I * Rcable

Voltage Across the Lamps

In a series circuit, the voltage across each component is the same as the total voltage supplied by the source (240V).

Current Drawn by Each Lamp

The current drawn by each lamp is equal to the total current flowing through the circuit. We can calculate the current using Ohm's Law: I = V / Rtotal Where: I = Current V = Voltage Rtotal = Total Resistance By following these calculations and principles of series circuits, we can determine the circuit parameters and analyze the behavior of the lamps in the given circuit setup.
← How to create the perfect airy drink with a 15 second shake What is the locked rotor current for a 5 hp dc motor during start up →